On Improved Mechanistic Modeling for Enzymatic Hydrolysis of Cellulose
نویسندگان
چکیده
An improved model for enzymatic hydrolysis of cellulose is developed that considers oligomer reactions with beta-glucanases, inhibition of oligomers to cellulases and enzyme decay processes during hydrolysis. Our oligomer reactions with beta-glucanases are modeled based on the enzymatic glucan chain fragmentation kinetics to describe the further fragmentation of oligomers in solution after being solubilized from the insoluble glucan chains. The inhibition effects on all cellulases by different types of cello-oligomers are then taken into account by competitive adsorption of cello-oligomers to the active site of cellulases, which is a critical factor contributing to the decrease in the rate of enzymatic hydrolysis of cellulose. As another factor affecting the kinetics of cellulose hydrolysis process, enzyme decay factor is incorporated into the model as the typical first order decay process. We consider two different processes for cellulases losing activity during hydrolysis in order to better understand the impact of enzyme decay on hydrolysis. Numerical simulation results are presented to investigate the phenomenon of hydrolysis rate slow-down commonly observed in experiments. Improvement of the predictive capability of the new model over previous one is clearly demonstrated by comparing the simulations with experimental data. By considering all the possible hydrolysis rate slow-down factors, the simulation results can agree with the experimental data very well, showing that our model is capable to fully capture the rate decrease of cellulose hydrolysis.
منابع مشابه
Enhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملComparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production
Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...
متن کاملKinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk
In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...
متن کاملEnzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol
Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed. The hydrolysis process involves two stages: in the first stage, the O...
متن کاملKinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
A semimechanistic multi-reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose-to-glucose and two heterogeneous reactions of cellulose-to-cellobiose and cellulose-to-glucose. Adsorption of cellulase onto pretreated CWR during enzymatic...
متن کامل